Rust: Tauri + Diesel + SQLite #
Small documentation, tips and experiences for accessing a SQLite database from Rust with the ORM library diesel
.
Complete and possibly extended code can be found in the repository archive_cat.
Requirements #
I use the following library
[build-dependencies]
tauri-build = { version = "1.3", features = [] }
[dependencies]
tauri = { version = "1.4.1", features = ["shell-open", "window-close"] }
serde = { version = "1.0", features = ["derive"] }
serde_json = { version = "1.0", features = ["raw_value"] }
home = "0.5.5"
diesel = { version = "2.1.0", features = ["sqlite", "64-column-tables"] }
dotenvy = "0.15.7"
chrono = "0.4.26"
url = "2.4.0"
tokio = { version = "1.28.2", features = ["full"] }
tracing = "0.1.37"
tracing-subscriber = "0.3.17"
base64 = "0.21.2"
[dependencies.uuid]
version = "1.4.1"
features = [
"v4", # Lets you generate random UUIDs
"fast-rng", # Use a faster (but still sufficiently random) RNG
"macro-diagnostics", # Enable better diagnostics for compile-time UUIDs
]
If necessary, install the libraries with cargo add xxx
.
For the tauri installation please look here TAURI and for diesel
here diesel.rs.
Connection with the database #
The usual way is the access via a .env
file. The access is somewhat dependent on the database, i.e., there are also databases that support pool-connections.
For SQLite, the SqliteConnection::establish
function should be used.
Example 1 database.rs
:
use std::env;
use diesel::prelude::*;
use dotenvy::dotenv;
use tracing::info;
pub fn establish_connection() -> SqliteConnection {
info!("start establish_connection()",);
dotenv().ok();
let database_url = env::var("DATABASE_URL")
.expect("DATABASE_URL must be set");
SqliteConnection::establish(&database_url)
.unwrap_or_else(|_| panic!("Error connecting to the database: {}",
database_url))
}
Here the library dotenvy
is taken for loading the .env
file. The variable here has the name DATABASE_URL
.
Example 2.env
DATABASE_URL=sqlite:///Users/jankstar/tauri_database.db
The database connection is then used as follows:
use crate::database::*;
...
let mut conn = establish_connection();
...
Alternatively, the user’s home
directory is accessed.
Example 3 database.rs
use diesel::prelude::*;
use tracing::info;
use home::home_dir;
pub fn establish_connection(database_filename: &str) -> SqliteConnection {
info!("start establish_connection()",);
let home_dir = home_dir().unwrap_or("").to_string();
let database_url = format!("sqlite://{}/{}",
home_dir.to_string_lossy(),
database_filename);
SqliteConnection::establish(&database_url)
.unwrap_or_else(|_| panic!("Error connecting to the database: {}",
database_url))
}
The database connection is then used as follows:
use crate::database::*;
...
let mut conn = establish_connection("tauri_database.db");
...
Model and schema #
The model defines the structure and the schema the database table. There is also the possibility to generate the rust objects from the database. I proceeded like this, but I had to adjust certain fields and settings, so here I present the working result.
Example 4 models.rs
use chrono::NaiveDateTime;
use diesel::{ Insertable, Queryable, Selectable, Table};
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize, Debug, Selectable, Insertable, Queryable)]
#[diesel(table_name = crate::schema::document)]
pub struct Document {
pub id: String,
pub subject: String,
pub status: String,
pub date: String,
pub sender_name: Option<String>,
pub sender_addr: Option<String>,
pub recipient_name: Option<String>,
pub recipient_addr: Option<String>,
pub from: Option<String>,
pub to: Option<String>,
pub body: Option<String>,
pub document_type: Option<String>,
pub metadata: Option<String>,
pub category: Option<String>,
pub amount: Option<f64>,
pub currency: Option<String>,
pub template_name: Option<String>,
pub doc_data: Option<String>,
pub input_path: Option<String>,
pub langu: Option<String>,
pub num_pages: Option<f64>,
pub protocol: Option<String>,
pub sub_path: Option<String>,
pub filename: Option<String>,
pub file_extension: Option<String>,
pub file: Option<String>,
pub base64: Option<String>,
pub ocr_data: Option<String>,
pub jpg_file: Option<String>,
pub parent_document: Option<String>,
pub created_at: String,
pub updated_at: String,
pub deleted_at: Option<String>,
}
schema.rs
table! {
document (id) {
id -> Text,
subject -> Text,
status -> Text,
date -> Timestamp,
sender_name -> Nullable<Text>,
sender_addr -> Nullable<Text>,
recipient_name -> Nullable<Text>,
recipient_addr -> Nullable<Text>,
from -> Nullable<Text>,
to -> Nullable<Text>,
body -> Nullable<Text>,
#[sql_name = "type"]
document_type -> Nullable<Text>,
metadata -> Nullable<Text>,
category -> Nullable<Text>,
amount -> Nullable<Double>,
currency -> Nullable<Text>,
template_name -> Nullable<Text>,
doc_data -> Nullable<Text>,
input_path -> Nullable<Text>,
langu -> Nullable<Text>,
num_pages -> Nullable<Double>,
protocol -> Nullable<Text>,
sub_path -> Nullable<Text>,
filename -> Nullable<Text>,
file_extension -> Nullable<Text>,
file -> Nullable<Text>,
base64 -> Nullable<Text>,
ocr_data -> Nullable<Text>,
jpg_file -> Nullable<Text>,
parent_document -> Nullable<Text>,
#[sql_name = "createdAt"]
created_at -> Timestamp,
#[sql_name = "updatedAt"]
updated_at -> Timestamp,
#[sql_name = "deletedAt"]
deleted_at -> Nullable<Timestamp>,
}
}
Diesel
features “64-column-tables”
#
In this example, more than 32 fields have been defined in the document
table. For this case, the features
“64-column-tables” must be set in the diesel
:
Cargo.toml
...
diesel = { version = "2.1.0", features = ["sqlite", "64-column-tables"] }
...
Change fieldname #
In addition, field names that are not defined snake_case or correspond to invalid syntax in rust, e.g. type
, must be mapped.
#[sql_name = "type"]
document_type -> Nullable<Text>,
Here the database field type
is mapped to the rust field document_type
.
CREATE TABLE IF NOT EXISTS #
The library diesel
does not yet directly support the creating of the tables. So if you want to create the tables first in an application with the start of the server, if they do not exist, then you have to implement the SQL statement itself.
In my example I have defined the function check_tables
in the file schema.rs
.
Example 5:
use diesel::sqlite::Sqlite;
use diesel::debug_query;
use diesel::prelude::*;
use tracing::info;
pub fn check_tables(mut con: diesel::SqliteConnection) -> Result<usize, diesel::result::Error> {
info!("start check_tables()");
let mut sql_sing = concat!(
"CREATE TABLE IF NOT EXISTS `document` (",
"`id` TEXT NOT NULL PRIMARY KEY, ",
"`subject` TEXT NOT NULL, ",
"`status` TEXT NOT NULL, ",
"`date` DATETIME NOT NULL, ",
"`sender_name` TEXT DEFAULT '', ",
"`sender_addr` TEXT DEFAULT '', ",
"`recipient_name` TEXT DEFAULT '', ",
"`recipient_addr` TEXT DEFAULT '', ",
"`from` TEXT DEFAULT '[]', ",
"`to` TEXT DEFAULT '[]', ",
"`body` TEXT DEFAULT '', ",
"`type` TEXT DEFAULT '', ",
"`metadata` TEXT DEFAULT '{}', ",
"`category` TEXT DEFAULT '[]', ",
"`amount` DECIMAL(10,2) DEFAULT 0, ",
"`currency` TEXT DEFAULT '', ",
"`template_name` TEXT DEFAULT '', ",
"`doc_data` TEXT DEFAULT '{}', ",
"`input_path` TEXT DEFAULT '', ",
"`langu` TEXT DEFAULT '', ",
"`num_pages` NUMBER DEFAULT 0, ",
"`protocol` TEXT DEFAULT '', ",
"`sub_path` TEXT DEFAULT '', ",
"`filename` TEXT DEFAULT '', ",
"`file_extension` TEXT DEFAULT '',",
"`file` TEXT DEFAULT '', ",
"`base64` TEXT DEFAULT '', ",
"`ocr_data` TEXT DEFAULT '', ",
"`jpg_file` TEXT DEFAULT '[]', ",
"`parent_document` TEXT DEFAULT '', ",
"`createdAt` DATETIME NOT NULL, ",
"`updatedAt` DATETIME NOT NULL, ",
"`deletedAt` DATETIME ",
");"
);
let exec_query = diesel::sql_query(sql_sing.to_string());
info!("debug sql\n{}", debug_query::<Sqlite, _>(&exec_query));
exec_query.execute(&mut con)
}
Selection of data #
For the selection of data, a distinction must be made between two variants - on the one hand, a table can be accessed like an “object”, on the other hand, an SQL-like query is available under DSL
. This must be differentiated already when including the libraries.
Select single by id #
The simplest variant is the selection via the ID.
Example 6 - Read a document for a document ID:
use crate::database::*;
use crate::models::*;
use crate::schema; // like document
use crate::schema::document::dsl; // like dsl::document
use crate::schema::Response;
use diesel::prelude::*;
use serde_json::json;
use tracing::{info, warn, error};
use tracing_subscriber;
...
let mut conn = establish_connection("tauri_database.db");
let my_document = match dsl::document
.filter(dsl::id.eq(my_query.id))
.select(Document::as_select())
.first::<Document>(&mut conn)
{
Ok(record) => record,
Err(err) => {
error!(?err, "Error: ");
return Response {
dataname: data,
data: "[]".to_string(),
error: format!("{}", err),
};
}
};
...
The fields of the selection are specified in .select()
, in the example all fields. The type of the result must be specified after .first
and must necessarily match the fields from .select
.
Select a subset of the fields #
Here it is very easy to define and select a subset of the fields using a separate structure. The definition of the structure has the advantage that also an object and if necessary a vector to this object can be defined.
Example 7 - select only certain fields:
models.rs
#[derive(Serialize, Deserialize, Debug, Selectable, Queryable)]
#[diesel(table_name = crate::schema::document)]
pub struct DocumentFile {
pub id: String,
pub sub_path: Option<String>,
pub filename: Option<String>,
pub file_extension: Option<String>,
pub file: Option<String>,
pub base64: Option<String>,
}
...
let mut conn = establish_connection("tauri_database.db");
let my_document = match dsl::document
.filter(dsl::id.eq(my_query.id))
.select(DocumentFile::as_select())
.first::<DocumentFile>(&mut conn)
{
Ok(record) => record,
Err(err) => {
error!(?err, "Error: ");
return Response {
dataname: data,
data: "[]".to_string(),
error: format!("{}", err),
};
}
};
...
Dynamic selection into a vector (local table) #
An elegant variant for a dynamic selection is the definition query
as BoxedDsl
. This can be used to combine and dynamically generate order_by()
or filter()
sorts.
In the following example, a URL is parsed dynamically and the selection conditions are built depending on the URL parameters. The notation is along the lines of `solr'.
For example 8:
http://localhost:8080/get_document?q=body:*Apple*&sort=date%20desc&rows=50
In this example, the string Apple
is to be searched for in the field body
. The records are sorted by the field date
in descending order and the first 50 records are selected.
Example 9:
use crate::database::*;
use crate::models::*;
use crate::schema;
use crate::schema::document::dsl;
use crate::schema::Response;
use diesel::prelude::*;
use serde_json::json;
use tracing::info;
use tracing_subscriber;
use url::Url;
...
let parsed_url = match Url::parse(&my_query_url) {
Ok(result) => result,
Err(err) => {
return Response {
dataname: path,
data: "[]".to_string(),
error: err.to_string(),
}}
};
let mut query = dsl::document.into_boxed();
let mut limit = 50;
let mut search: String; // = "".to_string();
//loop via URL parameter
for pair in parsed_url.query_pairs() {
info!(?pair, "document url pair");
//------------------------------------
if pair.0 == "rows" {
//limit of rows parameter
match pair.1.parse::<i64>() {
Ok(v) => {
limit = v;
}
_ => {}
};
}
//------------------------------------
if pair.0 == "sort" {
//sort parameter
let mut sort_field_iter = pair.1.split_whitespace();
let sort_field_name = sort_field_iter.next().unwrap_or(r#""#);
let sort_field_order = sort_field_iter.next().unwrap_or(r#""#);
match sort_field_name {
"date" => {
if sort_field_order == "desc" {
query = query.order_by(dsl::date.desc());
} else {
query = query.order_by(dsl::date.asc());
}
}
"subject" => {
if sort_field_order == "desc" {
query = query.order_by(dsl::subject.desc())
} else {
query = query.order_by(dsl::subject.asc())
}
}
"status" => {
if sort_field_order == "desc" {
query = query.order_by(dsl::status.desc());
} else {
query = query.order_by(dsl::status.asc());
}
}
"amount" => {
if sort_field_order == "desc" {
query = query.order_by(dsl::amount.desc());
} else {
query = query.order_by(dsl::amount.asc());
}
}
_ => query = query.order_by(dsl::date.desc()),
}
}
//------------------------------------
if pair.0 == "q" {
//where parameter
let mut filter_field_iter = pair.1.split(':');
let filter_field_name = filter_field_iter.next().unwrap_or(r#""#);
let filter_field_match = filter_field_iter.next().unwrap_or(r#""#);
//the `*`from the transfer string into placeholder `%`for the selection
search = String::from(str::replace(&filter_field_match, "*", "%"));
match filter_field_name {
"body" => query = query.filter(dsl::body.like(search)),
"subject" => query = query.filter(dsl::subject.like(search)),
"status" => query = query.filter(dsl::status.like(search)),
"date" => query = query.filter(dsl::date.eq(search)),
"amount" => {
//Conversion of the transfer string into a number
query = query.filter(dsl::amount.eq(search.parse::<f64>().unwrap_or(0_f64)))},
"sender_name" => query = query.filter(dsl::sender_name.like(search)),
"recipient_name" => query = query.filter(dsl::recipient_name.like(search)),
"category" => query = query.filter(dsl::category.like(search)),
_ => {}
};
}
}
let mut conn = establish_connection("tauri_database.db");
match query
.limit(limit)
.filter(dsl::deleted_at.is_null())
.select(DocumentSmall::as_select())
.load::<DocumentSmall>(&mut conn)
{
Ok(result) => Response {
dataname: path,
data: json!(&result).to_string(),
error: String::from(""),
},
Err(err) => Response {
dataname: path,
data: "[]".to_string(),
error: err.to_string(),
},
}
...
The coding is not completely dynamic, because the used fields must have been defined in the structures of the database schema.rs
and models.rs
.
Only the selection statemnt is dynamically assembled. In the example all conversions were also checked for validity by match
, so that no panic
is triggered, especially with transfer values from users.
SQL functions count(*)
or sum(amount)
#
The standard functions in SQL for count(*)
or sum(x)
are available in diesel
. But I only got the function count(*)
to work, so here is the variant as native sql
.
Example 10:
...
use crate::diesel::sqlite::Sqlite;
use crate::schema::document::dsl;
use diesel::debug_query;
use diesel::prelude::*;
use diesel::dsl::sql;
use diesel::sql_types::Double;
...
let operation: &str;
if path.as_str() == "chart_count" { //parameter to control statement
operation = "count(id) AS count"; //count documents
} else {
operation = "sum(amount) AS sum"; //sum the amount
}
let exec_query = document::table
.into_boxed()
.filter(
dsl::deleted_at
.is_null()
.and(dsl::date.le(local_start.to_string())) //date from/to start datetime
.and(dsl::date.ge(local_end.to_string()))
.and(dsl::category.like(format!("%{}%", query))) //query contains the selected category
.and(dsl::amount.is_not_null()),
)
.select(sql::<Double>(operation));
info!("debug first sql\n{}", debug_query::<Sqlite, _>(&exec_query));
let y_value = exec_query.first::<f64>(&mut conn).unwrap_or(0_f64);
It is a bit strange, but in the where
condition the datatype is required to be dubble
, because my field amount
is of this type and the return value is f64
- the values are converted between FromSql/ToSql and the application.
Insert and update function #
For an insert, the structure ‘Insertable’ must be entered.
Example 11:
...
#[derive(Serialize, Deserialize, Debug, Selectable, Insertable, Queryable, AsChangeset)]
#[diesel(table_name = crate::schema::document)]
pub struct Document {
pub id: String,
pub subject: String,
pub status: String,
pub date: String,
...
}
Subsequently, with an ‘insert’ and specification of the complete struture, processing can take place.
Example 12:
match insert_into(document::dsl::document)
.values(Document {
id: my_id,
subject: ele.subject.clone(),
status: ele.status.clone(),
date: ele.date.clone(),
sender_name: ele.sender_name.clone(),
sender_addr: ele.sender_addr.clone(),
recipient_name: ele.recipient_name.clone(),
recipient_addr: ele.recipient_addr.clone(),
from: Some(json!(from_partner).to_string()),
to: Some(json!(to_partner).to_string()),
body: ele.body.clone(),
document_type: Some("PDF".to_string()),
metadata: None,
//replace {} in []
category: Some(category_array.clone()),
//value round to 2 decimal places
amount: Some(amount_round),
currency: ele.currency.clone(),
template_name: ele.template_name.clone(),
doc_data: None,
input_path: ele.input_path.clone(),
langu: Some("DE".to_string()),
num_pages: None,
protocol: ele.protocol.clone(),
sub_path: ele.sub_path.clone(),
filename: data_attachment.filename.clone(),
file_extension: None,
file: data_attachment.file.clone(),
base64: None,
ocr_data: data_attachment.ocr_data.clone(),
jpg_file: Some(conv_obj_to_array(
data_attachment.jpg_file.clone().unwrap_or("[]".to_string()),
)),
parent_document: my_parent_document.clone(),
created_at: Local::now().to_string(),
updated_at: "".to_string(),
deleted_at: get_deleted_at(ele.deleted.clone()),
})
.execute(&mut akt_con)
{
Ok(_) => {}
Err(err) => {
error!("insert document: {}", err)
}
};
For an update of a dataset you can use .set()
or for all fields of the structure AsChangeset
, i.e., in the model this macro is entered and then you can update all fields of this structure.
Example 13 models.rs
:
...
use chrono::NaiveDateTime;
use diesel::{ Insertable, Queryable, Selectable, Table, AsChangeset};
use serde::{Deserialize, Serialize};
...
#[derive(Serialize, Deserialize, Debug, Selectable, Queryable, AsChangeset)]
#[diesel(table_name = crate::schema::document)]
pub struct DocumentSmall {
pub id: String,
pub subject: String,
pub status: String,
pub date: String,
pub sender_name: Option<String>,
pub sender_addr: Option<String>,
pub recipient_name: Option<String>,
pub recipient_addr: Option<String>,
pub from: Option<String>,
pub to: Option<String>,
pub category: Option<String>,
pub amount: Option<f64>,
pub currency: Option<String>,
pub body: Option<String>,
pub filename: Option<String>,
pub file_extension: Option<String>,
pub file: Option<String>,
pub protocol: Option<String>,
}
...
The update is called with .filter(dsl::id.eq(my_document_new.id.clone())))
so that exactly one record gets the update.
Several .set()
are defined as tuples, in my example the structure my_document_new
is set as AsChangeset
and also the field updated_at
is set to the current date and time.
Example 14:
...
let database_name = format!("{}/{}", MAIN_PATH, DATABASE_NAME);
let mut conn = establish_connection(&database_name);
...
let exec_update = diesel::update(dsl::document
.filter(dsl::id.eq(my_document_new.id.clone())))
.set((
&my_document_new, //update AsChangeset
dsl::updated_at.eq(Local::now().to_string()) //update datetime
));
info!("debug sql\n{}", debug_query::<Sqlite, _>(&exec_update));
match exec_update.execute(&mut conn)
{
Ok(_) => {
Response {
dataname: path,
data: json!(&my_document_new).to_string(),
error: "".to_string(),
}
}
Err(err) => {
error!(?err, "Error: ");
Response {
dataname: path,
data: "[]".to_string(),
error: err.to_string(),
}
}
}
Function debug_query
extracts the statement for the output
#
There is also a function to output the generated SQL statement. In this case you separate selection and execution.
Example 15:
...
use diesel::debug_query;
use crate::diesel::sqlite::Sqlite;
use diesel::prelude::*;
use tracing::{error, info, warn};
use tracing_subscriber;
...
let mut conn = establish_connection("tauri_database.db");
let exec_query = dsl::document
.filter(dsl::id.eq(my_query.id))
.select(DocumentFile::as_select());
info!("debug sql\n{}", debug_query::<Sqlite, _>(&exec_query));
let my_document = match exec_query.first::<DocumentFile>(&mut conn) {
Ok(record) => record,
Err(err) => {
error!(?err, "Error: ");
return Response {
dataname: data,
data: "[]".to_string(),
error: format!("{}", err),
};
}
};
The function debug_query
extracts the statement for the output. Afterwards the execution and further processing of the data takes place.
Read PDF file to base64 conversion #
In my example the name and path of the PDF file is in the SQLite database. In the examples shown above the file name from field file
and also the path from field sub_path
is read to the document ID exactly for one document. The files are in the home
directory in a main directory MAIN_PATH
belonging to the program and in this then in a FILE_PATH
.
Example 16 - Definition of constants for the directories to be used in the home
directory:
database.rs
pub const MAIN_PATH: &str = r#"archive"#;
pub const DATABASE_NAME: &str = r#"tauri_database.db"#;
pub const FILE_PATH: &str = r#"data"#;
After the selection of the data from the database the following determination of the home
directory takes place:
Example 17:
info!(?my_document.id, "select document id" );
info!(?my_document.sub_path, "select document subpath" );
use home::home_dir;
let home_dir = match home_dir() {
Some(result) => result,
None => {
return Response {
dataname: data,
data: "[]".to_string(),
error: r#"no pdf found"#.to_string(),
};
}
};
let filename = my_document.file.unwrap_or("".to_string());
if filename.is_empty() {
return Response {
dataname: data,
data: "[]".to_string(),
error: r#"no pdf found"#.to_string(),
};
}
//Build PDF Filenames
let pdf_file = format!(
"{}/{}/{}/{}{}",
home_dir.to_str().unwrap_or("").to_string(),
MAIN_PATH,
FILE_PATH,
my_document.sub_path.unwrap_or("".to_string()),
filename
);
info!(?pdf_file, "select document file");
At the end pdf_file
contains the complete path for accessing the file, so that now the file can be opened and loaded as binary into a variable list_of_chunks
of type Vec<u8>
.
Example 18:
//open file by name
let mut file = match std::fs::File::open(&pdf_file) {
Ok(file) => file,
Err(err) => {
error!(?err, "Error: ");
return Response {
dataname: data,
data: "[]".to_string(),
error: format!("{}", err),
};
}
};
info!(?filename, "open file by name ");
//Read PDF as binary file
use std::io::{self, Read, Seek, SeekFrom};
let mut list_of_chunks = Vec::new();
let chunk_size = 0x4000;
loop {
let mut chunk = Vec::with_capacity(chunk_size);
let n = match file
.by_ref()
.take(chunk_size as u64)
.read_to_end(&mut chunk)
{
Ok(data) => data,
Err(err) => {
info!(?err, "error file read");
break;
}
};
if n == 0 {
break;
}
for ele in chunk {
list_of_chunks.push(ele);
}
if n < chunk_size {
break;
}
}
The data from the PDF file is now in list_of_chunks
and is converted to base64
and returned.
Example 19:
if list_of_chunks.len() != 0 {
//binary encode to base64
use base64::{engine::general_purpose, Engine as _};
let base64_data = general_purpose::STANDARD.encode(list_of_chunks);
return Response {
dataname: data,
data: json!(&base64_data).to_string(),
error: "".to_string(),
};
Tauri server #
Communication between Tauri and Vue #
Finally an info about the communication between Tauri and Vue. For this I can recommend the very good documentation at Rob Donnelly.
I have implemented this variant. The transfer from/to Vue is always done as string
in the end, so all structures have to be converted in and out as json
string.
Example 20 - Vue javascript file to call Tauri
import { invoke } from "@tauri-apps/api/tauri";
...
invoke("js2rs", {
message: JSON.stringify({
path: "category",
query: "?json=true",
data: "category",
}),
});
...
In my example, the message
field is transmitted as a JSON string and then needs to be parsed in Tauri into the path
, query
and data
components.
Example 21 Tauri command for the invoke
:
#[tauri::command]
async fn js2rs(message: String, state: tauri::State<'_, AsyncProcInputTx>) -> Result<(), String> {
let mut sub_message = message.clone();
sub_message.truncate(50);
info!(?sub_message, "js2rs");
let async_proc_input_tx = state.inner.lock().await;
async_proc_input_tx.send(message).await.map_err(|e| {
println!("{}", e.to_string());
e.to_string()
})
}
Here the string is sent into the channel async_proc_input_tx
to be processed one after the other.
Example 22.
async fn async_process_model(
mut input_rx: mpsc::Receiver<String>,
output_tx: mpsc::Sender<String>,
) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
while let Some(input) = input_rx.recv().await {
let mut parse_error = false;
let my_input_data: Receiver = match serde_json::from_str(input.as_str()) {
Ok(data) => data,
Err(err) => {
parse_error = true;
let my_output_data = Response {
dataname: "".to_string(),
data: "[]".to_string(),
error: err.to_string()
};
let output = json!(my_output_data).to_string();
match output_tx.send(output).await {
_ => {}
}
Receiver {
path: "".to_string(),
query: "".to_string(),
data: "[]".to_string()
}
}
};
if !parse_error {
let my_output_data: Response =
message_handler(my_input_data.path, my_input_data.query, my_input_data.data).await;
let output = json!(my_output_data).to_string();
match output_tx.send(output).await {
_ => {}
}
}
}
Ok(())
}
There are the following structures in my example that are converted between Tauri and Vue:
Example 23 from schema.rs
.
#[derive(serde::Serialize, Debug)]
pub struct Response {
pub dataname: String,
pub data: String,
pub error: String,
}
#[derive(serde::Serialize, serde::Deserialize, Debug)]
pub struct Receiver {
pub path: String,
pub query: String,
pub data: String,
}
Central data app_data
#
In the Tauri - Vue communication, the tauri-handler contains a Stauts parameter that controls the processing of the channel. Similarly, in my application I need central information that the server manages and that should be available in the handlers, i.e., read, used or changed there and persistently saved. I decided to use a json file in the home directory. With the start of the server the data is read or, if the file does not exist, initialized and if the user maintains the data from the Vue application, the data should be written into the corresponding file.
First we need the data structure and the functions for reading, changing and saving.
Example 24 main.rs
#[derive(serde::Serialize, serde::Deserialize, Debug)]
pub struct AppData {
pub main_path: String,
pub email: String,
pub name: String,
pub clone_dir: String,
}
impl AppData {
//constructor from `app_data` as clone()
pub fn new(app_data: &AppData) -> Self {
info!("AppData new()");
AppData {
main_path: app_data.main_path.clone(),
email: app_data.email.clone(),
name: app_data.name.clone(),
clone_dir: app_data.clone_dir.clone(),
}
}
//constructor from file
pub fn init_app_data() -> Self {
info!("AppData init_app_data()");
let home_dir = home_dir().unwrap_or("".into());
let file_and_path = format!(
"{}/{}",
home_dir.to_str().unwrap_or("").to_string(),
database::APP_DATA_FILENAME
);
use std::fs::read_to_string;
let app_data_string = read_to_string(file_and_path).unwrap_or("".to_string());
let app_data = match serde_json::from_str(&app_data_string) {
Ok(result) => result,
Err(err) => {
error!(?err, "Error: ");
AppData {
main_path: database::MAIN_PATH.to_string(),
email: "".to_string(),
name: "".to_string(),
clone_dir: "".to_string(),
}
}
};
return app_data;
}
pub fn set(&mut self, main_path: String, email: String, name: String, clone_dir: String) {
self.main_path = main_path;
self.email = email;
self.name = name;
self.clone_dir = clone_dir;
self.save_me();
}
pub fn save_me(&self) {
info!("AppData save_me()");
let home_dir = home_dir().unwrap_or("".into());
let file_and_path = format!(
"{}/{}",
home_dir.to_str().unwrap_or("").to_string(),
database::APP_DATA_FILENAME
);
let app_data_json = json!(self).to_string();
match fs::write(file_and_path, app_data_json) {
Ok(_) => {}
Err(err) => {
error!(?err, "Error: ");
}
};
}
}
There are two constuctor
here - once with new(data)
a new object is created over the passed data, on the other hand with the function init_app_data()
, here we read from the file and generate the object. In both cases the instance of AppData
is returned.
The file itself with the data from AppData
is always read or written into the home
directory with the name defined as from APP_DATA_FILENAME
.
There is now the function set(data)
which also calls save_me()
and finally saves the data as a json
file.
In the main
routine in the tauri server, the object can be passed via manage()
and is then available optinally as a parameter in dan tauri-handlers.
Example 25:
fn main() {
tracing_subscriber::fmt::init();
generate_directory_database();
let (async_proc_input_tx, async_proc_input_rx) = mpsc::channel(1);
let (async_proc_output_tx, mut async_proc_output_rx) = mpsc::channel(1);
tauri::Builder::default()
.manage(AsyncProcInputTx { // Mutex to manage
inner: Mutex::new(async_proc_input_tx),
})
.manage(AppData::init_app_data()) // AppData to manage
.invoke_handler(tauri::generate_handler![js2rs]) // tauri handler
.setup(|app| {
tauri::async_runtime::spawn(async move {
async_process_model(async_proc_input_rx, async_proc_output_tx).await
});
let app_handle = app.handle();
tauri::async_runtime::spawn(async move {
loop {
if let Some(output) = async_proc_output_rx.recv().await {
rs2js(output, &app_handle);
}
}
});
Ok(())
})
.run(tauri::generate_context!())
.expect("error while running tauri application");
}
The tauri handler js2rs
can now receive the new parameter:
Example 26:
#[tauri::command]
async fn js2rs(
message: String,
state: tauri::State<'_, AsyncProcInputTx>,
app_data: tauri::State<'_, AppData>,
) -> Result<(), String> {
let mut sub_message = message.clone();
sub_message.truncate(50);
info!(?sub_message, "js2rs");
let async_proc_input_tx = state.inner.lock().await;
async_proc_input_tx
.send((message, AppData::new(app_data.inner())))
.await
.map_err(|e| {
println!("{}", e.to_string());
e.to_string()
})
}
Async process model #
Because at this point processing does not yet take place, but the data is first passed into a channel for asynchronous processing, the Message and AppData must be passed as tuples and the type of the Input parameter must also be adjusted.
Example 27:
...
struct AsyncProcInputTx {
inner: Mutex<mpsc::Sender<(String, AppData)>>,
}
...
async fn async_process_model(
mut input_rx: mpsc::Receiver<(String, AppData)>, //input tuple with AppData
output_tx: mpsc::Sender<String>,
) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
while let Some((message, app_data)) = input_rx.recv().await {
let mut parse_error = false;
let my_message_data: Receiver = match serde_json::from_str(message.as_str()) {
Ok(data) => data,
Err(err) => {
parse_error = true;
let my_output_data = Response {
dataname: "".to_string(),
data: "[]".to_string(),
error: err.to_string(),
};
let output = json!(my_output_data).to_string();
match output_tx.send(output).await {
_ => {}
}
Receiver {
path: "".to_string(),
query: "".to_string(),
data: "[]".to_string(),
}
}
};
if !parse_error {
let my_output_data: Response = message_handler(
app_data, //app_data as parameter
my_message_data.path,
my_message_data.query,
my_message_data.data,
)
.await;
let output = json!(my_output_data).to_string();
match output_tx.send(output).await {
_ => {}
}
}
}
Ok(())
}
To do this, the channel and also the async_process_model
function must be adapted accordingly and the app_Data
parameter extended.
Tauri command message handler #
In the tauri handler itself the object AppData can then be used. In my example there is user
for reading and save_user
for saving from the application.
Example 28:
#[tauri::command(async)]
async fn message_handler(
//window: tauri::Window,
//database: tauri::State<'_, Database>,
mut app_data: AppData,
path: String,
query: String,
data: String,
) -> Response {
let message = format!(
"path: {}, query: {}, data: {}",
path.as_str().clone(),
query.as_str().clone(),
data.as_str().clone()
);
info!(message, "message_handler");
io::stdout().flush().unwrap();
match path.as_str() {
//----
"user" => {
let home_dir = home_dir().unwrap();
let message = format!("Your home directory, probably: {}", home_dir.display());
info!(message, "message_handler");
let my_data = json!( UserData {
email: app_data.email,
name: app_data.name,
path_name: app_data.main_path,
clone_path: app_data.clone_dir,
avatar: "".to_string()
}).to_string();
Response {
dataname: "me".to_string(),
data: my_data,
error: "".to_string(),
}
}
//----
"save_user" => {
let my_save_user_data: SaveUserCommand = match serde_json::from_str(&data) {
Ok(result) => result,
Err(err) => {
error!(?err, "Error: ");
return Response {
dataname: data,
data: "[]".to_string(),
error: format!("{}", err),
};
}
};
app_data.set(
my_user_data.path_name.clone(),
my_user_data.email.clone(),
my_user_data.name.clone(),
my_user_data.clone_path.clone(),
);
let my_data = json!(my_user_data).to_string();
Response {
dataname: "me".to_string(),
data: my_data,
error: "".to_string(),
}
}
...
}
}
The save_user
for the function set(data)
off, which then also writes the data to the home
directory, so that after a restart this data can be read.
Client invoke
#
On the client side in Vue, simply start the invoke
with the data:
Example 29 MainLayout.vue
:
import { invoke } from "@tauri-apps/api/tauri";
...
saveDialogMe() {
console.log(`MainLayout saveDialogMe()`);
this.me.name = this.dialogMeData.name || "";
this.me.email = this.dialogMeData.email || "";
this.me.path_name = this.dialogMeData.path_name || "";
this.me.clone_path = this.dialogMeData.clone_path || "";
this.me.avatar = this.getGravatarURL(this.me.email);
invoke("js2rs", {
message: JSON.stringify({
path: "save_user",
query: "",
data: JSON.stringify(this.me),
})});
this.dialogMe = false;
},
...
The avatar
is determined on the client, that must be released for the access in the Tauri tauri.conf.json
.
Client event listener #
The communication from rust to Vue (Javascript) is done via a listener. This is registered in MainLayout.vue
at the time create()
and requests at this point also the user data via invoke
.
Example 30:
async created() {
console.log(`MainLayout created()`);
const that = this;
await listen('rs2js', (event) => {
try {
that.loading = false;
let data = JSON.parse(event.payload);
if (data.data) {
data.data = JSON.parse(data.data);
}
let { dataname: lDataName, data: lData, error: lError } = data;
console.log("listen rs2js event ", lDataName);
if (lError) {
that.$q.notify({
message: "Error: " + lError,
color: "negative",
icon: "warning",
});
console.error(`Error listen rs2js event ${lError}`)
return;
}
if (!lData || !lDataName) {
return;
}
if (lDataName == "me") {
that[lDataName] = lData;
if (that.me.email) {
that.me.avatar = that.getGravatarURL(that.me.email);
}
}
that.ServerData = { dataname: lDataName, data: lData, error: lError };
} catch (err) {
console.error("listener rs2js error ", err);
}
return;
});
this.loading = true;
invoke("js2rs", {
message: JSON.stringify({
path: "user",
query: "?json=true",
data: "me",
})
});
},
In this example, the variable ServerData
is distributed to the other Vue Componets depending on which one is currently active.
Conclusion #
Rust is like any other programming language: you have to study it to understand it. Some features allow elegant programming, others are incomprehensible and make it difficult to use. There is always light and shadow. For the error messages of the compiler you quickly get a feeling what you did wrong, it is merciless. The language could be more understandable and coherent in my opinion, other programming languages are much better.
Dynamic parameters and also the forced error handling are really good. It creates a robust program, even if it takes a little longer.
The channels reminded me of golang, but the powerful promise
from JavaScript is not nearly reached.
Some of the libraries are still in their infancy, it will take some time to establish stability for productive use, but the path is the right one. In some places, one wishes for better documentation and more examples - which is what I tried to do with this post.
Thanks to the hardworking developers of diesel
and tauri
- it was fun and I will continue down the path because you can’t process media data in Electron for example and that runs in tauri, that’s my next project.
(2023/08/01) Index